Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest Ophthalmol Vis Sci ; 65(4): 14, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38578621

RESUMO

Purpose: This study aims to examine the short-term peripheral choroidal thickness (PChT) response to signed defocus blur, both with and without native peripheral aberrations. This examination will provide insights into the role of peripheral aberration in detecting signs of defocus. Methods: The peripheral retina (temporal 15°) of the right eye was exposed to a localized video stimulus in 11 young adults. An adaptive optics system induced 2D myopic or hyperopic defocus onto the stimulus, with or without correcting native peripheral ocular aberrations (adaptive optics [AO] or NoAO defocus conditions). Choroidal scans were captured using Heidelberg Spectralis OCT at baseline, exposure (10, 20, and 30 minutes), and recovery phases (4, 8, and 15 minutes). Neural network-based automated MATLAB segmentation program measured PChT changes from OCT scans, and statistical analysis evaluated the effects of different optical conditions over time. Results: During the exposure phase, NoAO myopic and hyperopic defocus conditions exhibited distinct bidirectional PChT alterations, showing average thickening (10.0 ± 5.3 µm) and thinning (-9.1 ± 5.5 µm), respectively. In contrast, induced AO defocus conditions did not demonstrate a significant change from baseline. PChT recovery to baseline occurred for all conditions. The unexposed fovea did not show any significant ChT change, indicating a localized ChT response to retinal blur. Conclusions: We discovered that the PChT response serves as a marker for detecting peripheral retinal myopic and hyperopic defocus blur, especially in the presence of peripheral aberrations. These findings highlight the significant role of peripheral oriented blur in cueing peripheral defocus sign detection.


Assuntos
Hiperopia , Miopia , Adulto Jovem , Humanos , Miopia/diagnóstico , Hiperopia/diagnóstico , Corioide , Retina , Fóvea Central , Refração Ocular
2.
Biomed Opt Express ; 14(8): 4190-4204, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37799675

RESUMO

The quantitative evaluation of peripheral ocular optics is essential in both myopia research and the investigation of visual performance in people with normal and compromised central vision. We have developed a widefield scanning wavefront sensor (WSWS) capable of multidirectional scanning while maintaining natural central fixation at the primary gaze. This Shack-Hartmann-based WSWS scans along any retinal meridian by using a unique scanning method that involves the concurrent operation of a motorized rotary stage (horizontal scan) and a goniometer (vertical scan). To showcase the capability of the WSWS, we tested scanning along four meridians including a 60° horizontal, 36° vertical, and two 36° diagonal scans, each completed within a time frame of 5 seconds.

3.
Sci Rep ; 11(1): 12196, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108506

RESUMO

The last decades have witnessed a sudden increase in myopia incidence among youngsters that have been related to modern lifestyle along with the use of emerging technologies affecting visual exposure. Increasing exposures to known risk factors for myopia, such as time spent indoors, close-distance work, or low-light conditions are thought to be responsible for this public health issue. In most cases, development of myopia is secondary to a vitreous chamber enlargement, although the related mechanisms and the potential interaction between central and peripheral retinal area remain unclear. For a better understanding, we performed a classical twin study where objective refractive error along 70° of horizontal retinal arc was measured in 100 twin pairs of university students, 78% of which showed manifest myopia. We found the variance of shared environmental origin (range 0.34 to 0.67) explained most of the objective refractive error variance within central 42° of the retina (22° temporal to 19° nasal), whereas additive genetic variance (range 0.34 to 0.76) was predominant in the peripheral retinal areas measured. In this sample of millennial university students, with a large prevalence of myopia, environmental exposures were mostly responsible for inter-individual variation in the retinal horizontal area surrounding the macula, while their relative weight on phenotypic variance was gradually descending, and replaced by the variance of genetic origin, towards the retinal periphery.


Assuntos
Doenças em Gêmeos/genética , Predisposição Genética para Doença , Miopia/diagnóstico , Refração Ocular/genética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto , Feminino , Hereditariedade , Humanos , Masculino , Miopia/genética , Fatores de Risco , Campos Visuais , Adulto Jovem
4.
Sci Rep ; 10(1): 8173, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424231

RESUMO

Over the last decades, the prevalence of myopia has suddenly increased, and at this rate, half of the world's population will be myopic by the year 2050. Contemporary behavioural and lifestyle circumstances, along with emergent technology, are thought to be responsible for this increase. Twin studies mostly reported a high heritability of refractive error across ethnicities. However, heritability is a population statistic and could vary as a result of changing environmental conditions. We studied the variance of refractive error in millennials with 100 twin pairs of university students in southeast Spain. The study population presented a high prevalence of myopia (77%). Statistical analysis showed the variance of refractive error in this group of young twins was mainly driven by the shared environment and, to a lesser extent, by additive genetic factors. We found an increase in myopia prevalence accompanied by a decrease in heritability in this sample of millennials in contrast with results from a previous generation group from the same ethnic origin.

5.
Sci Rep ; 9(1): 18487, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811185

RESUMO

To evaluate the impact of multifocal contact lens wear on the image quality metrics across the visual field in the context of eye growth and myopia control. Two-dimensional cross-correlation coefficients were estimated by comparing a reference image against the computed retinal images for every location. Retinal images were simulated based on the measured optical aberrations of the naked eye and a set of multifocal contact lenses (centre-near and centre-distance designs), and images were spatially filtered to match the resolution limit at each eccentricity. Value maps showing the reduction in the quality of the image through each optical condition were obtained by subtracting the optical image quality from the theoretical physiological limits. Results indicate that multifocal contact lenses degrade the image quality independently from their optical design, though this result depends on the type of analysis conducted. Analysis of the image quality across the visual field should not be oversimplified to a single number but split into regional and groups because it provides more insightful information and can avoid misinterpretation of the results. The decay of the image quality caused by the multifocal contacts alone, cannot explain the translation of peripheral defocus towards protection on myopia progression, and a different explanation needs to be found.

6.
PLoS One ; 14(4): e0213574, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939130

RESUMO

The popularity of myopia treatments based on the peripheral defocus theory has risen. So far, little evidence has emerged around the questions which of these treatments are effective and why. In order to establish a framework that enables clinicians and researchers to acknowledge the possible interactions of different defocus patterns across the retina, different peripheral refractive errors (PRX) of subjects and different designs of optical treatments were evaluated. Dioptric defocus patterns on the retinal level have been obtained by merging the matrices of dioptric defocus maps of the visual field of different scenarios with individual peripheral refractive errors and different optical designs of multifocal contact lenses. The newly obtained matrices were statistically compared using a non-parametric test with familywise error algorithms and multi-comparison tests. Results show that asymmetric peripheral refractive error profiles (temporal or nasal positively skewed) appear to be less prone to be changed by the defocus imposition of multifocal contact lenses than those presenting symmetric patterns (relative peripheral myopia or hyperopia).


Assuntos
Olho/patologia , Hiperopia/terapia , Miopia/terapia , Retina/patologia , Adulto , Feminino , Fóvea Central/fisiopatologia , Humanos , Hiperopia/patologia , Cristalino/patologia , Masculino , Miopia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...